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BENDING AND SHEAR STRESSES DEVELOPED BY THE INSTANTANEOUS ARREST OF
THE ROOT OF A MOVING CANTILEVER BEAM

By EurIipGE Z. SToWwELL, EpWwiRD B. ScEWARTZ, and Joax C. HouBOLT

SUMMARY

A theoretical and experimental investigation has been made
of the behavior of & cantilerer beam in transrerse motion when
its root ie suddenly brought to rest. Egqualions are given for
determining the sgiresses, the deflections, and the accelerations
that arise in the beam as a result of the impact. The theoretical
equations, which hare been confirmed experimentally, reveal
that, at a given percentage of the distance from root to tip, the
bending stresses for a particular mode are independent of the
length of the beam twhereas the shear siresses vary inversely
with the length.

INTRODUCTION

When an airplane lands, the vertical component of the
velocity is rapidly reduced to zero. In the absence of a
thorough analysis of the stresses that arise from such shocks,
it is customary for engineers to assume that the landing

loads are static and independent of the elastic properties of .

the structure. As an initial step in the study of elastic
structures under shock loads, an investigation has been made
to determine the effect on a simple structure of the sudden
arrest of its motion and the effect of the geometry of the
structure on the stresses that result. The particular case
treated in this report covers the basic problem of the in-
stantaneous arrest of the root of a moving cantilever beam.
The solution of this problem gives the energy consumed in
exciting the different modes of vibration and the stresses,
deflections, and accelerations that result throughout the
beam. .

This investigation 'is based on the usual engineering
beam theory in which the deflections are considered to be the
result of bending alone and shear deflections are neglected.
The theory, as applied to ordinary beams, gives reasonably
good results as long as the distance between inflection
points is greater than a few times the depth of the beam.
When this theory for beam action is used in vibration
problems, such as the problem in the present paper, the
results are satisfactory for those modes of vibration for
which the nodes are not too close together. This report
summarizes the results of & theoretical solution, given in
the appendix, and presents an experimental verification
of these results.

SYMBOLS
E modulus of elasticity
¥ weight density of material
A coefficient of equivalent viscous damping of
material
¢ velocity of sound in material (1 /%)
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w(z, 1)
Wa(2, £)

a(z, t)
ax(z, 1)

o(z, ¥, 1)

0'“(‘-'5, ¥, t)

7(2, )

7.(2, 1)

QWb

acceleration of gravity

length of beam

moment of inertia of cross section of beam about
neutral axis

cross-sectional area of beam

) . . I
radius of gyration of cross section of beam <\/%)

coordinate along beam measured from root
distance from neutral axis of beam to any fiber
time, zero at impact

0
operator (a:

integers 1, 2, 3, ete., designating a particular
mode of vibration

nth positive root 14 cos @ cosh =0

undamped natural angular frequency of nth mode,

radians per second (pc %";2)

damped natural angular frequency of ath mode,

. / Mo?
radians per second w,..\ 1—4—ET' (When

A, .
E’;>l, the is defined by

wg'=w#%:)

velocity of beam prior to impact

deflection of beam at station z and time ¢

deflection of beam at station z and time # for
nth mode of vibration

acceleration of beam at station x and time ¢

acceleration of beam at station z and time ¢ for
nth mode of vibration

bending stress in beam at station =z, distance
from neutral axis y, and time ¢

bending stress in beam at station x, distance
from neutral axis ¥, and time ¢ for nth mode of
vibration

average shear stress over cross section of beam at
station z and time ¢ _

average shear stress over cross section of beam
at station x and time ¢ for nth mode of
vibration

bending-stress coefficient

shear-stress coefficient

deflection coefficient

“frequency”’

581



582

RESULTS AND CONCLUSIONS
THEORETICAL

When a cantilever beam under uniform translation in
a direction perpendicular to its length has it root instanta-
neously brought to rest, there is excited a theoretically infi-
nite number of modes of vibration. With each successive

mode, damping has an increasing influence upon the fre- -

quencies and amplitudes of vibration and, for sufficiently high
modes, even changes the type of motion from oscillatory to
nonoscillatory motion. In thelower modes,however,demping
has little effect, and only terms of the first order in damp-
ing need to be included in the equations. Only the equa-
tions applicable to the lower modes, which alone are of
importance in any practical case, are presented in this section
of the paper. For a more complete treatment of damping,
see the appendix.

The angular frequencies (27 times the frequencies in cps)
are given by the equation

0 2

wn=Pcfu2 o (1)

where 8, has the following values for successive modes of
vibration:

6;=1.875104 0;=14.137168
8:—4.694098 b= 17 278759
0;="7.854757

6,.~ en—1)x, n>6

6,=10.995541

The energy that the beam possesses before impact is

consumed in exciting the various modes of vibration and
is distributed among the modes as follows:

P, o

Mode, 5 eroentage of
1 61.8
2 18.8
3 7.4
4 3.2
5 L9
[ © L3
70 o 6.1

This distribution of energy among the different modes of
vibration is presented graphically in figure 1.
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Fiaurk 1.—Distribution of energy among the modes of vibration.
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All stresses, deflections, and sccelerations are damped
sinusoidal functions of time and vary along the length of
the beam. The bending stress o4(z,¥,f) and the avernge
shear stress 7,(x, t), associated with the nth mode of vibra-
tion, are given by the equations

- : e
v 3E
oz, Yy, Bi=d, —c-g— Ee sin wyl (2)
ety
v p °E
7alz, =208, e FEe sin wut (3)

The variation of the dimensionless coefficients A, nnd B,
with /L is given for n=1, 2, and 3 in figures 2 and 3. The
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‘FicURE 2.—Variation of bending-stress cocfleient A with zfL.

hiphest values of A4, and B,, and hence the highest stresses,
occur at. the root of the beam. These values, for the first
six modes, are

Mode, n Ay at root By, 8t root
1 1. 566 2,146
2 . 868 4 149
2 . 500 3.604
4 . 304 4,00
& .383 4.00
8 .231 4.00

The foregoing values of A, and B, at the root are presented
graphically in figure 4.

The maximum values with respect to titne of ou(x, ¥, £)
and 7,(z, {) associated with the nth mode of vibration, when
the effects of damping are neglected, are
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The deflections w.(z, £} for the nth mode of vibration are

given by the equation

Aumd
ZEt

. J2
wy (2, 0 =C, % L?e

sin wyl (6)
The accelerations a.(x, f) for the nth mode, when damping
is sufficiently small, are given by

aﬂ(xf t) = —-w.“’w,(a:, t) (7)

The variation of the dimensionless coefficient C, with /L is
given for n=1, 2, and 3 in figure 5.

The equations (4) to (7) for stress, deflection, and accelera-
tion give the values associated with the nth mode of vibra-
tion. Since all modes of vibration occur simultaneously, the
net results are the superposition of the effects of all modes.
This superposition gives the following equations:
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For bending stress,
- it
0'(9:, ¥, t) =‘E% E (A:e 2 sin wyt

st

+ A % sin et .. ) (8)

For average shear stress,

T
E(Ble B gin wt

Aot
E Sin wot - . . ) @)

For deflection,
. 2 deap?
w(z, t)==%% (O'le _TELtsin w b

+C’ge"%tsin w4+ . . ) (10)

For acceleration, when damping is sufficiently small,
2 hwi?
a(z, t) =ic~) L—; (Clwfe PE*Sin wit
e,
+Chote “TE " Sin wpbt . . ) (11)

The equation for bending stress. (equation (4)) reveals
that, at a given percentage of the distance from root to tip,
the bending stress for a particular mode is independent of
the length of the beam and depends only on the velocity
before impact. The equation for shear stress (equation (5))
reveals that the shear stresses at any station vary inversely
with the length of the beam. These results are contrary to
those that might be expected on the basis of experience with
the static behavior of structures. For this reason an ex-
perimental investigation was made.

EXPERIMENTAL

A circular steel tube of 1-inch outside diameter and 0.028-
inch wall thickness was mounted symmetrically on the end
of a pendulum to form a pair of cantilever beams. (See
fig. 6.) The pendulum was permitted to start its swing from
a predetermined position and was suddenly brought to rest
at the bottom of its swing against an electromagnet used to
prevent rebound. The effect of length was studied by
reducing- the length of the tube in successive tests. The
bending and shear strains were measured by electrical strain
gages that were mounted on the tube as shown in figure 7.
Each pair of gages was incorporated into a Wheatstone
bridge circuit as shown diagrammatically in figure 8. The
outputs of the bridge systems were fed through a strain-gage

"strains on moving photographic paper.
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FravrE 6.—Iendulum assembly used in impaet test.
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FIGURE 7.—Locatlon of strain gages on tube,

amplifier into a multichannel oscillograph that recorded tho
The amplitude of
the components of strain due to the modes of higher fre-
quency was reduced, however, because of the response charae-
teristics of the oscillograph. The frequency-response curve
for the oscillograph used is given in figure 9.

Typical records for tubes of two lengths are shown in
figure 10. Inspection of the record for the cantilever beam
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FiGURE 8.—Frequency responsa of strain-gage amplifier and Miller (2000~} oscillograph;
.69 critical damping.

26¥% inches long shows the superposition of the second and
third modes upon the first mode. The record shows that, in
the case of the bending strain, the contribution of the second
mode is small; whereas, in the case of the shear strain, the
contribution of the second mode is large. This observation
confirms qualitatively the theoretical results shown in figure 4.
The same effect is not shown, however, in the record for
the cantilever beam 11¥% inches long because of the combined
action of damping and reduced response of the oscillograph
to the higher frequencies associated with this short length of
tube.

The bending stresses computed by use of equation (8), in
which only the first three modes are used, are given by the
solid-line curve of figure 11 for the cantilever beam 26¥ inches
long. Comparison of this curve with the record obtained
during the first ¥ cycle of the first mode (see fig. 10) shows
good agreement, as regards the wave shape.

Because of the damping present in the tube and the
response characteristics of the oscillograph, the only com-
ponent of vibration that could be satisfactorily recorded for
all lengths of cantilever tube was the fundamental or first
mode. The quantitative results of the tests consequently
were based upon this mode of vibration. This procedure is
sound because the effects of the various hermonics are
independent. of one another. In the analysis of the results,
the data had to be corrected for the influence of the magnet.
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FIGURE 10.—?0rﬂons of typlcal records obtulned for two different lengths of tube.
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Fieurx 11.—Theoretical wave form for extreme-fiber bending stress at roat obtalned from
the first three modes of vibrutlon. Steel tube, I-inch outside diameter; wall thickmess,
0.028 Inch; Jength, 2634 inches.
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= — — E—— ———— = The observed frequencies are compared with the frequen-
o |o o o o cies computed from equation (1) for the first mode in the
8 following table:
- —— Theoratical curves Frequency
°  Averoge of right and leff arms Length
4 il n) Obgerved Computed
(eps) (eps)
48 17.6 17.5
: 3 ar.e 282
@) - 2g§ 521 53.2
1 131 137
a 11 272 o

) The experimental values of extreme-fiber bending stresses
\ and the shear stresses at the root, for the fundamental mode,
are plotted in figure 12. In figure 12 are also shown the
corresponding theoretical curves of equation (4) for bending
and equation (5) for shear with » taken as 1. It is ob-
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AN served that the experimental points follow the trend of and

4 o~ lie close to the theoretical curves.
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FIGURR 12.—Comparison of experimentally and theoretically determined maximum stresses . 8
of fundamental mode at root of cantilever tubs, Impact velooity, 2.5 feet per second. LaneLey Fievp, Va., S'epie mber 27 1844,




APPENDIX

THEORETICAL DERIVATION

Genereal analysis.—Consider a beam of uniform crosssec-
tion in equilibrium. If 2 portion of the beam is suddenly
disturbed, as by a shock, in a direction perpendicular to its
length, the beam is set into damped bending oscillations.
The equation of motion for these bending oscillations is given
by the differential equation (reference 1)

Ep* ar4+7\P T‘l'"y?' (A1)

The damping term Ap? % is derived on the assumption

that the longitudinel damping force per unit area at any
point on the cross section of the beam is proportional to the
rate of change of longitudinal strain at that point. (See
reference 2.) This type of foree is analogous to ordinary
viscous drag, in which the tangential force per unit area is
proportional to the rate of change of shear strain. With the

use of the notation c’=%: equation (Al) can be written

Ow , A d'w , 1 2w

AT B T o ¢ (42)

In accordance with the Heaviside operational methods
(reference 3), equation (A2) may be reduced to an ordinary

differential equation of the fourth order by writing P=§f;
thus,

(142 3) T+ £ w=0 (43)

" The general solution of equation (A3) is

w=P cosh ¢ —%—I—Q sinh ¢ %+R sin 8 %—[—S cos 6 % (A4)

=T, __w
/ A
pc—\ 1+p F

The coefficients P, @, R, and S are to be determined from
the boundary conditions. The case under consideration is
that of a cantilever moving with uniform velocity » and
having its base brought instantaneously to rest. The
boundary conditions for this case are

where

ow

The velocity of the root as given by the first boundary con-
dition is represented graphically in figure 13(a). The rules
of the Heaviside calculus, however, have been devised for
a disturbance, called the unit funetion I, shown in figure
13(b). By the principle of superposition, the velocity func-
tion shown in figure 13(a) may be considered as a super-
position of those shown in figures 13{¢) and 13(d). The
velocity therefore consists of a constant velocity » (fig. 13(e))
added to the solution of the problem obtained by the Heavi-
side expansion theorem for the disturbance shown in figure

13(d). On the basis of this procedure, the first boundary
@
gt lx=0
(a) v"vl
4} ¢ —
vl
(b -
v
e 5
@ -v1
[7]

TFi1aURE 13.—Graphic representation of various veloelty functions.
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condition may be written

(%%) =-o=p (W) smo==—01

With the application of the boundary conditions to equation (A4), the operational form of the solution for the velocity

(that induced by the disturbance) is found to be

—p7 z z
PO=51F cosh 6 cos 6)[(1+°°S ¢ cosh 6) (cosh 6 F-+cos az)

~+sin 4 ginh 6 (cosh 6 %—cos 6 %)—i—(sinb 6 cos § +-cosh ¢ sin 6) (sin 6 %-—- sinh 6 E)]

(A5)

Interpretation of this operational expression and addition of the constant velocity » gives for the total velocity

o, b)_, 8 (0. 2) P | 008 -2 i
a_t_q._gz-{-zpngl)ﬁ’ 0"L e 2E cos @,'t _J _k’w,.’sm wy't Y 1

AWy

(A6)

4E*

where
64 nth positive root of 14 cos 6 cosh 8=0
2 '
wy=pC QLE" " undamped natural anguler frequency of nth mode, radians/sec

—_—

Ny

W' =w, ,\/ 1 —;_E; damped natural a_r_lgu_lgr frequency of nth mode, radians/sec

sin @, sinh 6, (cosh 64 %—cos 0, %)— (cosh @, sin 8,+sinh @, cosf,) (sinh 6,%—sin 0,.%)

z
F(0.%)=
Integration of equation (A6) with respect to the time with

the condition (w);.e=0 gives for the deflection

@ F(a,%) deat, .
H=233——"L¢ % ging't1
Rl Wn

w(z,
2 ® —Ml’t
=§L7n_lo,—1_T_2_wﬁe B Sinw,/t1 (A7)
\/ 1= ' |
where -
]
2F <onz
Gu= F]

2 _Na-’t .
Wy(x, ) =%L7 0,——17—"0—2 e % gin w,tI (A8)
- R

When %>1, equation (A8) may be put in the form

2
1 el

L2

70,V—e % ginh v/t 1 (A9)
W . .
ver—t

?
'wn(:zz, t) =z

6, (cosh ¢, sin 8,—sinh 0; cos §,)

where now

’ Mol

Wy =0uyf Ty 1
The form indicated by equation (A8), whero %‘E <1, is

characteristic of the lower modes and represents damped
oscillatory motion. The form indicated by equation (A9), -

where ;“"_Ea> 1 (damping greater than critical), is characteristic

of the higher modes and represents subsidence motion.
From equation (A6) for velocity and equation (A7) for
deflection, the complete behavior of the cantilever may De
determined. The quantities of interest are the bending
stresses, the shear stresses, and to some extent the accelers-
tions. When damping is present, the equations representing
the contribution of the nth mode to these quantities may be
given in the two forms-indicated by equations (A8) and (A9).
In subsequent equations, however, only the form indicated
by equation (A8) is given because it is characterisiic of the

modes that are of practical importance.

Bending stresses.—The bending stresses o(z, 3, ¢) at any
fiber distance ¥ from the neutral axis are

" Ofw
o (z, 9, )=Ey 5

—rglls 1
_EGPEA. )\’w,.e
Y=
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where

sin 6, sinh 6, (cosh 8, %—I—cos 8, %)—(cosha, $in 6,+-sinh 6, cos8,) (smh 6.%—[—51'11 e,%)

An=2 0, (cosh 4, sin 8,—sinh 6, cos 6,)

The bending stress due to only the nth mods is

’ vy 1 .,
an (T, Y, t)=EE—pA“—__)\TT_‘zG sin w,'t I
\/ 1= age
Shear stresses.—The average shear stress over the cross section 7 (z, ?) is
O*w
7 (z, )=Ep? >
vpS 1 redty
B E A

4E?

where
sin 6§, sinh 8 (sinh 8, ~—sin § E)—(cosh@ sin @,-}-sinh 8, cos 8,) { cosh 6 E—[—c:os. 6 E)
3 z . 3 L A L ) B " b . = L Aa L
cosh 6, sin 8,—sinh 8, cos 6,

B,=2

The average shear stress due to only the nth mode is
Aatn?
e (&, O)= E—— 2 in wa't 1

‘\/ 4E2
Accelerations.—From equation (AB), with the aid of the relation
pF(t) I=F(0)pI+F'(f) 1

the acceleration anywhere on the beam is found to be
- _k’w."’ . f )\’w,
Pule 8937 (0.5 )~ 1] p1—t2 e, TN 2R <——1 >7) e gin o \ cos w,'t |1
ot *L a= / Mo, 2
\ 1__4E’ ~35

a(z, )=

=]

With the aid of the orthogonal properties of the functions £ 0 1t, is possible to show that the qua.ntxty 2EF 6x +)—
L

reduces to zero when 0< <1. At _O the quantity 2ZF e equals zero, and only the term —opl remains.
L= L L

This term indicates that at t=0 an infinite acceleration of zero duration exists at the root.
The acceleration due to only the nth mode is

)\2 lz k n 7\: .
o I e EV "1

ax(z, t)__E " .t Oy ﬁ e & ¢ sin m,’t-[——v—cos wyt i 1
2

Vi 4E 1—2E:
Comparison with the expression for w,(z,f) (equation (AS)) REFERENCES
shows that the aceceleration for each mode is out of phase | 1. Den Hartog, J. P.: Mechanical Vibrations. Second ed., McGraw-
with the deflection. Yhen damping is sufficiently small, Hill Book Co., Inc., 1940, p. 180.

however, the relation between the acceleration and the | 2 Honds, Kbtart, "‘Ed K““n"_’ Seibei: On the Determination of the
Coefficient of Normal Viscosity of Metals. Phil. Mag., ser. 6,

deflection reduces to the well-known result for undamped vol. 42, no. 247, July 1921, pp. 115-123.

vibration 3. Carson, John R.: Electrie Circuit Theory and the Operational
(2, )=—o w2, 1) Calenlus. MeGrav-Hill Book Co., Inc., 1926.




